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BACKGROUND \

Data Generating Function (Data Generating Equation):

X = f(Z,p)

X represents the data we observed;

The random latent variable Z has known distribution Fj.
The deterministic function f is known.

The parameter u is fixed;

Generalized Fiducial Distribution (GFD): A probability
measure on the parameter space defined as

lim |arg min ||z — f (Z7, p*)|| | min ||z — f (27, p7)[| < €
e—0 w e

Theorem ([Hannig et al., 2016])

Under mild condition, the limiting distribution above has a density

flz|p)d(z, p)
A [ f (@) J (z, ') dp’

where f(x|p) is the likelihood function and

T(@,) = D (Vf (o)l se0)
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with D(A) = (det A’A)=.

Forward Solution: Standard MCMC-type sampling techniques have
already been implemented [Hannig et al., 2016]. However,
sometimes the generalized fiducial density can be hard to
compute.

Inverse Function If the data generating function is monotone in y,
then there exists a unique inverse function: = g(X, 7).

Backward Solution If the exact form of the inverse function exists,

we can sample from the approximate generalized fiducial distribution
through the approximate fiducial computation (AFC) algorithm;

AFC = GFS = Generalized Fiducial Distribution (GFD).

With GFD, one can construct most common inference procedures
(point estimates, confidence intervals and so on).

METHODS / SIMULATION I \ / SIMULATION II \

_ o x—,uxl—i—,uzxzwherexeﬂ?m.peﬂ? and z € N,,,(0,1), q = 3, _
Output: Generalized Fiducial Samples(GFS) _3 Many Means: x = u + 2z, with x, 1,z € ™ and m = 3
Initialization: itr = 0; GFS = 0; Wlth AFC: 1 X, 1000 mdependent Cop|e5 of Z. (C|_— 95%) The parameter of interests is the square of the -2 norm of u, ||u|?,
while (itr < max_itr) and (card(GFS) < N), e ikl el instead of p itself.
o | —1 =K = o= — — ]
do \ / ol / Since X = f(f1,z*) =i+ z*=9g(x,2*)+2* =x— 2" +2z* =x, We
S:ample z from Fo; “1 o\ \\ | proposed the following estimation i = ||| * (x/||x||) with
M= Q(I, Z); \| / \ / \ / 'u —x — 7z~
= f(z p) v | JN Confidence Curves with and without AFC.(CL= 90%)
if dist(x,%) < Threshold then R A L R I
Accept ﬁl . S 'I'I:i-ﬂl.:-l-l ....(_____ = I'ninn--l-lflif-f_ - 'II.||-—.-I|.-I-E 20 — | o ~ —
Else \\lll ,f/ \\,\ / \I\H / ) 0.8 1 \\ /
Reject [i; R f/ T\ |/ 1 !/ \ /)
enc 1AL N \/
?:t'r — ?:t'r + l| a0 . \./ . . . 0o . \Illl"'l . . . i I1I|"III . . . 0.2 1 Without AFC I‘.I /HI
end o - lf;'n:f.!::i Level ‘Hu"
Aleorithm 1: A - C AFC Both the point estimation and confidence interval estimation i Sk S S
gorithm 1: APPROXIMATE FIDUCIAL COMPUTATION( ) improves. Note decreasing the threshold might not always help. -
ot | Encoder Decoder S | oa | 200 observations, 1000 generalized fiducial samples, and confidence level = 90%
T Add T | Efficiency and Accuracy Trade-off: If AEC | C e 4 Cl Leneth E 4 M £ 4 Medi
VA SHER | Y worse . overage Expecte engt xpected Mean Expected Median
AL AL Function = Selection of Threshold: No | 0.85 3.12 3.91 3.91
5 W "5y B RN .- ata Generatin . . .
jEnmder Decoder - runction If the threshold is too big = biased samples; Yes 1095 3-29 3.65 3.64
_ _ _ o If the threshold is too small, = very difficult to generate enough Table 3: Inference Performance with and without AFC. (True ||p|” = 3.37)
Punchline: The inverse function plays a similar role as the
samples.
encoder. o _
Fiducial Autoencoder (FAE): A convenient and efficient computation Efficiency and Accuracy Trad_e-off. In pr_act_lce, we COUIC'i Us€ one As shown in Table 3, the empirical coverage increase 10%. In addition,
tool, FAE, is implemented to generate the fiducial distribution random batch of samples to estimate the distribution of dist(z, Z), both the expected median and the expected mean are more accurate.

and select the threshold.

without knowing the exact form the density. CO N C LU S I O N S

200 observations, 1000 generalized fiducial samples, and confidence level = 90%

Fiducial Autoencoder (FAE) True 1 | Coverage Expected Cl Length Expected Mean Expected Median
1 0.985 2.03 1.07 0.9
2 0.905 3.5 2.64 2.49
3 0.865 4.25 3.85 3.81
4 0.87 4.28 4.43 4.45
In summary, we introduce AFC and provide a backward solution for
Table 1: Inference Performance without AFC. generalized fiducial inference.
We further design FAE for the circumstance in which the analytical
200 observations, 1000 generalized fiducial samples, and confidence level = 90% form of the inverse function is not available.
Trule K g%xéerage ?Ifxlpected Cl Length E’;Tcmd Mean E)B%ected Median The universal approximation theorem provides theoretical guarantees
- . . 5 0.95 407 > 55 518 for the approximation performance.
Loss Function: L = wi|z — 2| 4+ we||p — fi| 3 0.97 3.43 3.22 2.99 Our simulation validates our approach.
Convenience of DFI: Finite observations? Not a problem! 4 0.94 3.3 3.98 3.89 Further research: real data applications.
For training the FAE and approximating the inverse function, we /
Table 2: Inference Performance with AFC.

could simulate infinite pairs of X and Z. /
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/ BACKGROUND \

Distribution Estimator

Point Estimator; Interval Estimator; Distribution Estimator
[Porne sstmoton .1
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Confidence Curve(CC) CC is a great visualization tool for GFD.

CC is defined as CV(u) = 2|F(pu|x) — 0.5|. CC shows confidence
intervals at all significance levels stacked up on each other.
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Fisher (1922, 1930, 1935) no formal definition

Lindley (1958) fiducial vs Bayes

Fraser (1966) structural inference

Dempster (1967) upper and lower probabilities

Dawid and Stone (1982) theoretical results for simple cases.
Barnard (1995) pivotal based methods.

Weerahandi (1989, 1993) generalized inference.
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» Dempster-Shafer calculus; Dempster (2008), Edlefsen, Liu &
Dempster (2009)

» Inferential Models: Liu & Martin (2015)

» Confidence Distributions; Xie, Singh & Strawderman (2011),
Schweder & Hjort (2016)

» Higher order likelihood, tangent exponential family, r*,
Reid & Fraser (2010)

» Objective Bayesian inference, e.qg., reference prior Berger,
Bernardo & Sun (2009, 2012).

» Fiducial Inference H, Iyer & Patterson (2006), H (2009,
2013), H & Lee (2009), Taraldsen & Lindqgvist (2013),
Veronese & Melilli (2015), H, Iyer, Lai & Lee (2016)...

METHODS

Challenge of Backward The inverse function might not have an
analytical form or might be difficult to calculate even if it exists.

Deep Fiducial Inference Use deep neural network to approximate
the inverse function and then apply AFC:

p=agnn(X,Z)

Reason for Using NN:

Theorem (Universal Approximation Theorem

[Hornik et al., 1989])

A feedforward network with a linear output layer and at least one hidden
layer with any “squashing” activation functions can approximate any Borel
measurable function, provided that the network is given enough hidden
units.

Fiducial Autoencoder Training

RESULTS

NDGF:x:,u,xl—l—,u%xzwherexeﬁﬁ‘m,geﬁ%,and

2 € Np(0,1), =3, m =3,
Without AFC: 1 X, 1000 independent copies of Z.(CL= 95%)
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Only 7 out of 9 are covered by the fiducial interval.
the confidence interval is very wide.
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DFI 2.0 =

F-GANs
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F-GANs (Fiducial General Adversarial Networks)
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